Test tube transport: the Hyperloop nears reality

Written by Catherine Bolgar, in association with WSJ custom studios

 

Source: Hyperloop Transportation Technologies
Source: Hyperloop Transportation Technologies

Imagine traveling in capsules sucked through a tube using low air pressure and magnetic acceleration to achieve speeds of up to 760 miles (1,223 km) per hour. That’s the idea of the California Hyperloop, which could eventually cut the travel time between Los Angeles and San Francisco to a mere 30 minutes, compared with today’s one-hour flight or six-hour car journey.

As soon as next year, a full-scale test track will begin construction in Quay Valley, a proposed sustainable community located between California’s two major metropolises.

The Hyperloop is a system that not only makes sense because it’s cheaper to construct, but it’s also sustainable so it’s cheaper to run,” says Dirk Ahlborn, chief executive officer of Hyperloop Transportation Technologies, Inc. “It changes the world.”

Tesla founder Elon Musk first laid out his Hyperloop vision in 2013 and invited others to take up the challenge. Turning the idea into a full-scale model in just three years may seem fast, but, as Mr. Ahlborn points out, it took a decade to get to the moon—“a way more difficult task,” he says. “The Hyperloop technology sounds like science fiction but, in the end, everything we’re doing already exists. The Quay Valley track is necessary to find out how to optimize the technology.”

The Hyperloop concept is similar to the pneumatic tubes used by banks to carry cash and documents, except that the passenger capsules would be sucked through the tube by controlled propulsion. A capsule (with large doors for speedy boarding) would enter a tightly sealed exterior shell. The tubes would probably be constructed from steel—although other materials, including fiberglass, are being considered—and covered with solar panels to supply the system’s energy. Low air pressure—of around 100 Pascals—would reduce air resistance inside the tube, while magnetic levitation and an air cushion would allow the capsule to hover above the tube’s surface. The straight track would further aid speed. As on a flight, passengers would sense how fast they are moving only when the capsule accelerates, slows or turns.

 

Hyperloop. Source: Forbes
Hyperloop. Source: Forbes

The Quay Valley track will allow engineers to work out optimum capsule size and boarding procedures. Each capsule is currently expected to seat 28 passengers and depart every 30 seconds during peak times, allowing a full-size Hyperloop to transport some 3,360 passengers an hour.

The Hyperloop would be elevated on pylons, making it possible to place the route above existing infrastructure such as highways, while also simplifying the process of obtaining right of way and minimizing the environmental impact.

More importantly, the pylons would be flexible enough to withstand earthquakes, in the way that pylons built in the 1970s to carry Alaska’s oil pipeline have proved resilient to such shocks, Mr. Ahlborn notes. As an enclosed system, the Hyperloop would also be impervious to harsh weather.

Perhaps more revolutionary than the technology is the way the Hyperloop team itself works. As well as partnering with companies and universities, more than 300 experts from 21 countries have been brought onto the team, working remotely online. Although they don’t get paid—most hold day jobs as engineers—they do get company stock options. “They’re driven by passion,” says Mr. Ahlborn.

The Hyperloop is groundbreaking in a commercial sense, too. It is expected to cost $16 billion to build, versus $68 billion for a comparable California high-speed rail line. Ticket prices for the Los Angeles-San Francisco stretch, at $20- $30, would be far cheaper than flying, and even that business model is open to disruption. “Do we need tickets?” asks Mr. Ahlborn. “Or are there other ways in which we can generate enough income.” Maybe the Hyperloop could “make more money having more people ride and we can say it’s free. Or maybe it’s free at certain times, and at peak times it costs a bit,” he adds.

The Hyperloop turns conventional infrastructure on its head, from its technology to its crowdsourcing. “Usually these things are done behind closed doors in a boardroom. We’re trying to be open. We’re using the community to do everything,” Mr. Ahlborn says. The Hyperloop “is a first for a lot of things.”

For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Catherine

Catherine

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.
  • I’ve enjoyed driving between LA and SF, but would welcome a faster, ground-based alternative. Musk is one of the great innovators of our time, and his hyperloop could fulfill multiple speed, ‘green’ and cost objectives. Many industrialized countries are pursuing more efficient connections between their major city/distribution hubs. Should be interesting to see how this and other once ‘futuristic’ transportation innovations (like autonomous, connected cars/trucks) progress over the next several months/years….