3D-Model Based Enterprise a SASIG initiative

Ram Pentakota

Director, Global Engineering Application Services Johnson Controls Automotive Seating

AIAG Insight. Expertise. Results.

SASIG is a global consortium of automotive standards organizations.

Product Development – Workflow

Effective Collaboration is Key to Optimal Operations

What is 3D GD&T?

3D GD&T (Model Based Definition) is a system in which product details are captured directly in the 3D model.

Model-Based Enterprise at Automotive Company AIAG (Embedded GD&T)

Embedded GD&T (EGDT) is the capability to create precise model-based definitions of dimensional tolerance requirements, associate those tolerances to features of a part/assembly model, and display that information within a 3D CAD model

Why 3D GD&T? IMPROVE COMMUNICATIONS

Drawings

3D GD&T

Where is my Datum A?

(Difficult to Communicate GD&T Content)

The highlighted area is Datum A

(Easy to Communicate GD&T Content)

Why 3D GD&T? MANAGE GD&T

Drawings

3D GD&T

I have Datums A,B,C,D,F

(Easy to manage GD&T Content)

Why 3D GD&T? IMPROVE GD&T QUALITY

Drawings

3D GD&T

Do I have any GD&T Mistakes?

(No Quality GD&T Check)

I have a Problem With Datum A

(Automatic GD&T Quality Checks)

Why 3D GD&T?

AIAG

QUALITY – Intelligent Content w/Quality Checks

Intelligent system 1 1

GD&T quality 2- rengineer's GD&T skills

Why 3D GD&T?

AIAG

QUALITY – Checking Inter-level zone dependencies

Component details not visible at the assembly level

Child/Parent datum alignment

Child/Parent GD&T alignment can <u>Easily</u> be checked <u>Systematically</u> using 3D GD&T

AIAG

Why do we need 3D MBE?

Insight. Expertise. Results.

3D-MBE Vision

To Promote the implementation of the 3D-MBD Model to enable seamless sharing of Product information within the extended enterprise and the Automotive industry

3D-MBE Maturity Index

(Downstream Usage)

1 A

3D-MBE Benefits

Category	Key Enablers	Typical Range
Designer Efficiency	•GS&T advisor supported GD&T information added to 3D model	10 - 30%
Engineering Efficiency	•Reduced involvement in repeat drawing creation iterations for GD&T information checking and validation	5 – 10%
Engineering effectiveness improvement	•Productivity gains to effectiveness	10 – 20%
Reduced need for manufactured part checking	•Access to correct GD&T information for manufacturing process planning	15 - 25%
Reduced Rework and Scrap	•Access to correct product information	10 – 20%
Reduced Cost of Quality	•Access to correct GD&T information for manufacturing process planning	2 – 10 %
Improved win rate (and margins) through higher quote confidence	•Sufficient time for cost estimation and sourcing based on timely and accurate PMI data availability	TBD
Quality of Life Improvement	•Eliminate non-value work	Intangible but Significant
Risk mitigation against significant product fulfillment error	 Single source of product information Access to correct product information to all stakeholders 	Significant

Target: Reduction in physical parts and testing by 50%

xpertise. Results.

Manufacturing Definition & Collaboration

What is role of Drawing?

Current State

All major OEMs have been trying for the past 10 years to implement full 3D.

Future State

3D-MBE Interim Approach

Future

3D MBD Utilization

Man-hour reductions Using 3D Annotated Model

Product Development

Manufacturing Work Instructions

An OEM study validated a 50 % man-hour reduction using 3D Annotated Models

Virtual Verification

Virtual verification (Compare a scanned part to 3D GD&T model) Higher priority for profile and position based callout in GD&T compare

Virtual verification can significantly reduce PPAP cost and be a powerful tool in 6 sigma studies

Model Based Dimensional Analysis

Development

"ROBUST DESIGN" Product Development Based

Driven by-Engineering Defined & Validated GD&T

Benefits-

Proactive DFMA Strategy Enables Build Anywhere Reduces Late Changes

Challenges-Release Cycle Extension

Manage Variation as an element of the Product Definition Product Lifecycle Stage

"VARIATION MGT" Process Engineering Based

Driven by-Manufacturing Updated GD&T

Benefits-

Process Driven Approach Closer to the Build Issues

Challenges-Less Iteration Flexibility

Manage Variation as an element of the Manufacturing Process Definition

Dimensional Engineering

Production

"FUNCTIONAL BUILD" Plant Quality Based

Driven by-Part Measurements

Benefits-Based on Actual Variation

Challenges-Reactive not Proactive

Manage Variation as an element of the Launch and Build Quality Process

Technical Data Package

Release to Release GD&T Compare

Supplier BOM Package

3D Master: Important points to be considered

Departments Barriers

Communication and Collaboration

Cultural Change Think 3D and not 2D

Impacts on Supply Chain Impacts on internal Processes

Evolution of certification

Thank You

AIAG Insight. Expertise. Results.